Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 84
1.
J Neurochem ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38721627

The elimination of amyloid-beta (Aß) plaques in Alzheimer's disease patients after treatment with anti-Aß antibodies such as lecanemab and aducanumab is supported by a substantially decreased signal in amyloid positron emission tomography (PET) imaging. However, this decreased PET signal has not been matched by a similar substantial effect on cognitive function. There may be several reasons for this, including short treatment duration and advanced disease stages among the patients. However, one aspect that has not been investigated, and the subject of this study, is whether antibody engagement with amyloid plaques inhibits the binding of amyloid-PET ligands, leading to a false impression of Aß removal from the brain. In the present study, tg-ArcSwe mice received three injections of RmAb158, the murine version of lecanemab or phosphate-buffered saline (PBS) before the administration of the amyloid-PET radioligand [11C]PiB, followed by isolation of brain tissue. Autoradiography showed that RmAb158- and PBS-treated mice displayed similar [11C]PiB binding. Moreover, the total Aß1-40 levels, representing the major Aß species of plaques in the tg-ArcSwe model, as well as soluble triggering receptor on myeloid cells 2 (sTREM2) levels, were similar in both groups. Interestingly, the concentration of soluble Aß aggregates was decreased in the RmAb158-treated group, along with a small but significant decrease in the total Aß1-42 levels. In conclusion, this study indicates that the binding of [11C]PiB to Aß accurately mirrors the load of Aß plaques in the brain, aligning with how amyloid-PET is interpreted in clinical studies of anti-Aß antibodies. However, early treatment effects on soluble Aß aggregates and Aß1-42 levels were not detected.

2.
MAbs ; 16(1): 2339337, 2024.
Article En | MEDLINE | ID: mdl-38634473

Recent development of amyloid-ß (Aß)-targeted immunotherapies for Alzheimer's disease (AD) have highlighted the need for accurate diagnostic methods. Antibody-based positron emission tomography (PET) ligands are well suited for this purpose as they can be directed toward the same target as the therapeutic antibody. Bispecific, brain-penetrating antibodies can achieve sufficient brain concentrations, but their slow blood clearance remains a challenge, since it prolongs the time required to achieve a target-specific PET signal. Here, two antibodies were designed based on the Aß antibody bapineuzumab (Bapi) - one monospecific IgG (Bapi) and one bispecific antibody with an antigen binding fragment (Fab) of the transferrin receptor (TfR) antibody 8D3 fused to one of the heavy chains (Bapi-Fab8D3) for active, TfR-mediated transport into the brain. A variant of each antibody was designed to harbor a mutation to the neonatal Fc receptor (FcRn) binding domain, to increase clearance. Blood and brain pharmacokinetics of radiolabeled antibodies were studied in wildtype (WT) and AD mice (AppNL-G-F). The FcRn mutation substantially reduced blood half-life of both Bapi and Bapi-Fab8D3. Bapi-Fab8D3 showed high brain uptake and the brain-to-blood ratio of its FcRn mutated form was significantly higher in AppNL-G-F mice than in WT mice 12 h after injection and increased further up to 168 h. Ex vivo autoradiography showed specific antibody retention in areas with abundant Aß pathology. Taken together, these results suggest that reducing FcRn binding of a full-sized bispecific antibody increases the systemic elimination and could thereby drastically reduce the time from injection to in vivo imaging.


Alzheimer Disease , Antibodies, Bispecific , Histocompatibility Antigens Class I , Receptors, Fc , Receptors, Transferrin , Animals , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides , Brain/diagnostic imaging , Brain/metabolism , Immunoglobulin G/metabolism , Mice, Transgenic , Receptors, Fc/immunology , Receptors, Fc/metabolism , Receptors, Transferrin/immunology , Receptors, Transferrin/metabolism
3.
EJNMMI Radiopharm Chem ; 9(1): 21, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38446356

BACKGROUND: The brain is a challenging target for antibody-based positron emission tomography (immunoPET) imaging due to the restricted access of antibody-based ligands through the blood-brain barrier (BBB). To overcome this physiological obstacle, we have previously developed bispecific antibody ligands that pass through the BBB via receptor-mediated transcytosis. While these radiolabelled ligands have high affinity and specificity, their long residence time in the blood and brain, typical for large molecules, poses another challenge for PET imaging. A viable solution could be a two-step pre-targeting approach which involves the administration of a tagged antibody that accumulates at the target site in the brain and then clears from the blood, followed by administration of a small radiolabelled molecule with fast kinetics. This radiolabelled molecule can couple to the tagged antibody and thereby make the antibody localisation visible by PET imaging. The in vivo linkage can be achieved by using the inverse electron demand Diels-Alder reaction (IEDDA), with trans-cyclooctene (TCO) and tetrazine groups participating as reactants. In this study, two novel 18F-labelled tetrazines were synthesized and evaluated for their potential use as pre-targeting imaging agents, i.e., for their ability to rapidly enter the brain and, if unbound, to be efficiently cleared with minimal background retention. RESULTS: The two compounds, a methyl tetrazine [18F]MeTz and an H-tetrazine [18F]HTz were radiolabelled using a two-step procedure via [18F]F-Py-TFP synthesized on solid support followed by amidation with amine-bearing tetrazines, resulting in radiochemical yields of 24% and 22%, respectively, and a radiochemical purity of > 96%. In vivo PET imaging was performed to assess their suitability for in vivo pre-targeting. Time-activity curves from PET-scans showed [18F]MeTz to be the more pharmacokinetically suitable agent, given its fast and homogenous distribution in the brain and rapid clearance. However, in terms of rection kinetics, H-tetrazines are advantageous, exhibiting faster reaction rates in IEDDA reactions with dienophiles like trans-cyclooctenes, making [18F]HTz potentially more beneficial for pre-targeting applications. CONCLUSION: This study demonstrates a significant potential of [18F]MeTz and [18F]HTz as agents for pre-targeted PET brain imaging due to their efficient brain uptake, swift clearance and appropriate chemical stability.

4.
Acta Neuropathol Commun ; 12(1): 22, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38317196

Deposition of amyloid beta (Aß) into plaques is a major hallmark of Alzheimer's disease (AD). Different amyloid precursor protein (APP) mutations cause early-onset AD by altering the production or aggregation properties of Aß. We recently identified the Uppsala APP mutation (APPUpp), which causes Aß pathology by a triple mechanism: increased ß-secretase and altered α-secretase APP cleavage, leading to increased formation of a unique Aß conformer that rapidly aggregates and deposits in the brain. The aim of this study was to further explore the effects of APPUpp in a transgenic mouse model (tg-UppSwe), expressing human APP with the APPUpp mutation together with the APPSwe mutation. Aß pathology was studied in tg-UppSwe brains at different ages, using ELISA and immunohistochemistry. In vivo PET imaging with three different PET radioligands was conducted in aged tg-UppSwe mice and two other mouse models; tg-ArcSwe and tg-Swe. Finally, glial responses to Aß pathology were studied in cell culture models and mouse brain tissue, using ELISA and immunohistochemistry. Tg-UppSwe mice displayed increased ß-secretase cleavage and suppressed α-secretase cleavage, resulting in AßUpp42 dominated diffuse plaque pathology appearing from the age of 5-6 months. The γ-secretase cleavage was not affected. Contrary to tg-ArcSwe and tg-Swe mice, tg-UppSwe mice were [11C]PiB-PET negative. Antibody-based PET with the 3D6 ligand visualized Aß pathology in all models, whereas the Aß protofibril selective mAb158 ligand did not give any signals in tg-UppSwe mice. Moreover, unlike the other two models, tg-UppSwe mice displayed a very faint glial response to the Aß pathology. The tg-UppSwe mouse model thus recapitulates several pathological features of the Uppsala APP mutation carriers. The presumed unique structural features of AßUpp42 aggregates were found to affect their interaction with anti-Aß antibodies and profoundly modify the Aß-mediated glial response, which may be important aspects to consider for further development of AD therapies.


Alzheimer Disease , Amyloid beta-Peptides , Animals , Humans , Mice , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid Precursor Protein Secretases/metabolism , Brain/pathology , Disease Models, Animal , Gliosis/pathology , Ligands , Mice, Transgenic
5.
Anal Biochem ; 686: 115406, 2024 03.
Article En | MEDLINE | ID: mdl-38006952

Despite years of utilizing the transferrin receptor 1 (TfR1) to transport large biomolecules into the brain, there is no consensus on how to optimally measure affinity to it. The aim of this study was to compare different methods for measuring the affinities of anti-TfR1 antibodies. Antibodies 15G11, OX26 and 8D3 are known to successfully carry large biologics across the blood-brain barrier in humans, rats, and mice, respectively. The affinity to their respective species of TfR1 was measured with different surface plasmon resonance setups in Biacore and an on-cell assay. When the antibody was captured and TfR1 was the analyte, the dissociation in Biacore was very slow. The dissociation was faster when the antibody was the analyte and TfR1 was the ligand. The Biacore setup with capture of N-terminal FLAG-tag TfR1 yielded the most similar apparent affinities as the cell assay. In conclusion, it is important to evaluate assay parameters including assay orientation, surface capture method, and antibody-format when comparing binding kinetics for TfR1 antibodies. Although it seems possible to determine relative affinities of TfR1 antibodies using the methods described here, both the FLAG-tag TfR1 capture setup and cell assays likely yield apparent affinities that are most translatable in vivo.


Antibodies , Surface Plasmon Resonance , Rats , Mice , Humans , Animals , Surface Plasmon Resonance/methods , Antibodies/metabolism , Blood-Brain Barrier/metabolism , Brain/metabolism , Receptors, Transferrin/metabolism
6.
Nat Neurosci ; 26(12): 2073-2080, 2023 Dec.
Article En | MEDLINE | ID: mdl-37973869

The use of transgenic mice displaying amyloid-ß (Aß) brain pathology has been essential for the preclinical assessment of new treatment strategies for Alzheimer's disease. However, the properties of Aß in such mice have not been systematically compared to Aß in the brains of patients with Alzheimer's disease. Here, we determined the structures of nine ex vivo Aß fibrils from six different mouse models by cryogenic-electron microscopy. We found novel Aß fibril structures in the APP/PS1, ARTE10 and tg-SwDI models, whereas the human type II filament fold was found in the ARTE10, tg-APPSwe and APP23 models. The tg-APPArcSwe mice showed an Aß fibril whose structure resembles the human type I filament found in patients with sporadic Alzheimer's disease. A detailed assessment of the Aß fibril structure is key to the selection of adequate mouse models for the preclinical development of novel plaque-targeting therapeutics and positron emission tomography imaging tracers in Alzheimer's disease.


Alzheimer Disease , Humans , Mice , Animals , Alzheimer Disease/pathology , Cryoelectron Microscopy , Amyloid beta-Peptides/metabolism , Mice, Transgenic , Brain/metabolism , Disease Models, Animal
7.
Article En | MEDLINE | ID: mdl-37680310

Introduction: Alzheimer's disease (AD) is characterized by the misfolding and aggregation of two major proteins: amyloid-beta (Aß) and tau. Antibody-based PET radioligands are desirable due to their high specificity and affinity; however, antibody uptake in the brain is limited by the blood-brain barrier (BBB). Previously, we demonstrated that antibody transport across the BBB can be facilitated through interaction with the transferrin receptor (TfR), and the bispecific antibody-based PET ligands were capable of detecting Aß aggregates via ex vivo imaging. Since tau accumulation in the brain is more closely correlated with neuronal death and cognition, we report here our strategies to prepare four F-18-labeled specifically engineered bispecific antibody probes for the selective detection of tau and Aß aggregates to evaluate their feasibility and specificity, particularly for in vivo PET imaging. Methods: We first created and evaluated (via both in vitro and ex vivo studies) four specifically engineered bispecific antibodies, by fusion of single-chain variable fragments (scFv) of a TfR antibody with either a full-size IgG antibody of Aß or tau or with their respective scFv. Using [18F]SFB as the prosthetic group, all four 18F-labeled bispecific antibody probes were then prepared by conjugation of antibody and [18F]SFB in acetonitrile/0.1 M borate buffer solution (final pH ~ 8.5) with an incubation of 20 min at room temperature, followed by purification on a PD MiniTrap G-25 size exclusion gravity column. Results: Based on both in vitro and ex vivo evaluation, the bispecific antibodies displayed much higher brain concentrations than the unmodified antibody, supporting our subsequent F18-radiolabeling. [18F]SFB was produced in high yields in 60 min (decay-corrected radiochemical yield (RCY) 46.7 ± 5.4) with radiochemical purities of >95%, confirmed by analytical high performance liquid chromatography (HPLC) and radio-TLC. Conjugation of [18F]SFB and bispecific antibodies showed a 65%-83% conversion efficiency with radiochemical purities of 95%-99% by radio-TLC. Conclusions: We successfully labeled four novel and specifically engineered bispecific antibodies with [18F]SFB under mild conditions with a high RCY and purities. This study provides strategies to create brain-penetrable F-18 radiolabeled antibody probes for the selective detection of tau and Aß aggregates in the brain of transgenic AD mice via in vivo PET imaging.

8.
Neuroimage ; 277: 120230, 2023 08 15.
Article En | MEDLINE | ID: mdl-37355199

Synaptic alterations in certain brain structures are related to cognitive decline in neurodegeneration and in aging. Synaptic loss in many neurodegenerative diseases can be visualized by positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A). However, the use of SV2A PET for studying synaptic changes during aging is not particularly explored. Thus, in the present study, PET ligand [18F]SynVesT-1, which binds to SV2A, was used to investigate synaptic density at different ages in healthy mice. Wild type C57BL/6 mice divided into three age groups (4-5 months (n = 7), 12-14 months (n = 11), 17-19 months (n = 7)) were PET scanned with [18F]SynVesT-1. Brain retention of [18F]SynVesT-1 expressed as the volume of distribution (VIDIF) was calculated using an image-derived input function. Estimates of VIDIF were derived using either a one-tissue compartment model (1TCM), a two-tissue compartment model (2TCM), or the Logan plot with blood input to find the best-fit model for [18F]SynVesT-1. After the PET scans, tissue sections were immunostained for the detection of SV2A and neuronal markers. We found that [18F]SynVesT-1 data acquired 60 min post intravenously injection and analyzed with 1TCM described the brain pharmacokinetics of the radioligand in mice well. [18F]SynVesT-1 brain retention was lower in the oldest group of mice, indicating a decrease in synaptic density in this age group. However, no gradual age-dependent decrease in synaptic density at a region-specific level was observed. Immunostaining indicated that SV2A expression and neuron numbers were similar across all three age groups. In general, these data obtained in healthy aging mice are consistent with previous findings in humans where synaptic density appeared stable during aging up to a certain age, after which a small decrease is observed.


Positron-Emission Tomography , Pyrrolidines , Humans , Mice , Animals , Infant , Mice, Inbred C57BL , Positron-Emission Tomography/methods , Pyrrolidines/pharmacokinetics , Pyridines/pharmacokinetics , Brain/diagnostic imaging , Brain/metabolism
9.
Fluids Barriers CNS ; 20(1): 34, 2023 May 11.
Article En | MEDLINE | ID: mdl-37170266

BACKGROUND: Transferrin receptor 1 (TfR1) mediated brain delivery of antibodies could become important for increasing the efficacy of emerging immunotherapies in Alzheimer's disease (AD). However, age, dose, binding to TfR1 on blood cells, and pathology could influence the TfR1-mediated transcytosis of TfR1-binders across the blood-brain barrier (BBB). The aim of the study was, therefore, to investigate the impact of these factors on the brain delivery of a bispecific TfR1-transported Aß-antibody, mAb3D6-scFv8D3, in comparison with the conventional antibody mAb3D6. METHODS: Young (3-5 months) and aged (17-20 months) WT and tg-ArcSwe mice (AD model) were injected with 125I-labeled mAb3D6-scFv8D3 or mAb3D6. Three different doses were used in the study, 0.05 mg/kg (low dose), 1 mg/kg (high dose), and 10 mg/kg (therapeutic dose), with equimolar doses for mAb3D6. The dose-corrected antibody concentrations in whole blood, blood cells, plasma, spleen, and brain were evaluated at 2 h post-administration. Furthermore, isolated brains were studied by autoradiography, nuclear track emulsion, and capillary depletion to investigate the intrabrain distribution of the antibodies, while binding to blood cells was studied in vitro using blood isolated from young and aged mice. RESULTS: The aged WT and tg-ArcSwe mice showed significantly lower brain concentrations of TfR-binding [125I]mAb3D6-scFv8D3 and higher concentrations in the blood cell fraction compared to young mice. For [125I]mAb3D6, no significant differences in blood or brain delivery were observed between young and aged mice or between genotypes. A low dose of [125I]mAb3D6-scFv8D3 was associated with increased relative parenchymal delivery, as well as increased blood cell distribution. Brain concentrations and relative parenchymal distribution of [125I]mAb3D6-scFv8D6 did not differ between tg-ArcSwe and WT mice at this early time point but were considerably increased compared to those observed for [125I]mAb3D6. CONCLUSION: Age-dependent differences in blood and brain concentrations were observed for the bispecific antibody mAb3D6-scFv8D3 but not for the conventional Aß antibody mAb3D6, indicating an age-related effect on TfR1-mediated brain delivery. The lowest dose of [125I]mAb3D6-scFv8D3 was associated with higher relative BBB penetration but, at the same time, a higher distribution to blood cells. Overall, Aß-pathology did not influence the early brain distribution of the bispecific antibody. In summary, age and bispecific antibody dose were important factors determining brain delivery, while genotype was not.


Alzheimer Disease , Antibodies, Bispecific , Mice , Animals , Amyloid beta-Peptides/metabolism , Mice, Transgenic , Brain/metabolism , Blood-Brain Barrier/metabolism , Alzheimer Disease/metabolism , Receptors, Transferrin/metabolism , Blood Cells/metabolism
10.
Alzheimers Res Ther ; 15(1): 90, 2023 05 02.
Article En | MEDLINE | ID: mdl-37131196

BACKGROUND: Brain-directed immunotherapy is a promising strategy to target amyloid-ß (Aß) deposits in Alzheimer's disease (AD). In the present study, we compared the therapeutic efficacy of the Aß protofibril targeting antibody RmAb158 with its bispecific variant RmAb158-scFv8D3, which enters the brain by transferrin receptor-mediated transcytosis. METHODS: AppNL-G-F knock-in mice received RmAb158, RmAb158-scFv8D3, or PBS in three treatment regimens. First, to assess the acute therapeutic effect, a single antibody dose was given to 5 months old AppNL-G-F mice, with evaluation after 3 days. Second, to assess the antibodies' ability to halt the progression of Aß pathology, 3 months old AppNL-G-F mice received three doses during a week, with evaluation after 2 months. Reduction of RmAb158-scFv8D3 immunogenicity was explored by introducing mutations in the antibody or by depletion of CD4+ T cells. Third, to study the effects of chronic treatment, 7-month-old AppNL-G-F mice were CD4+ T cell depleted and treated with weekly antibody injections for 8 weeks, including a final diagnostic dose of [125I]RmAb158-scFv8D3, to determine its brain uptake ex vivo. Soluble Aß aggregates and total Aß42 were quantified with ELISA and immunostaining. RESULTS: Neither RmAb158-scFv8D3 nor RmAb158 reduced soluble Aß protofibrils or insoluble Aß1-42 after a single injection treatment. After three successive injections, Aß1-42 was reduced in mice treated with RmAb158, with a similar trend in RmAb158-scFv8D3-treated mice. Bispecific antibody immunogenicity was somewhat reduced by directed mutations, but CD4+ T cell depletion was used for long-term therapy. CD4+ T cell-depleted mice, chronically treated with RmAb158-scFv8D3, showed a dose-dependent increase in blood concentration of the diagnostic [125I]RmAb158-scFv8D3, while concentration was low in plasma and brain. Chronic treatment did not affect soluble Aß aggregates, but a reduction in total Aß42 was seen in the cortex of mice treated with both antibodies. CONCLUSIONS: Both RmAb158 and its bispecific variant RmAb158-scFv8D3 achieved positive effects of long-term treatment. Despite its ability to efficiently enter the brain, the benefit of using the bispecific antibody in chronic treatment was limited by its reduced plasma exposure, which may be a result of interactions with TfR or the immune system. Future research will focus in new antibody formats to further improve Aß immunotherapy.


Alzheimer Disease , Mice , Animals , Alzheimer Disease/genetics , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Brain/metabolism , Antibodies/therapeutic use , Antibodies/pharmacology , Immunotherapy , Disease Models, Animal
11.
RSC Med Chem ; 14(3): 444-453, 2023 Mar 22.
Article En | MEDLINE | ID: mdl-36970152

Pretargeting is a powerful nuclear imaging strategy to achieve enhanced imaging contrast for nanomedicines and reduce the radiation burden to healthy tissue. Pretargeting is based on bioorthogonal chemistry. The most attractive reaction for this purpose is currently the tetrazine ligation, which occurs between trans-cyclooctene (TCO) tags and tetrazines (Tzs). Pretargeted imaging beyond the blood-brain barrier (BBB) is challenging and has not been reported thus far. In this study, we developed Tz imaging agents that are capable of ligating in vivo to targets beyond the BBB. We chose to develop 18F-labeled Tzs as they can be applied to positron emission tomography (PET) - the most powerful molecular imaging technology. Fluorine-18 is an ideal radionuclide for PET due to its almost ideal decay properties. As a non-metal radionuclide, fluorine-18 also allows for development of Tzs with physicochemical properties enabling passive brain diffusion. To develop these imaging agents, we applied a rational drug design approach. This approach was based on estimated and experimentally determined parameters such as the BBB score, pretargeted autoradiography contrast, in vivo brain influx and washout as well as on peripheral metabolism profiles. From 18 initially developed structures, five Tzs were selected to be tested for their in vivo click performance. Whereas all selected structures clicked in vivo to TCO-polymer deposited into the brain, [18F]18 displayed the most favorable characteristics with respect to brain pretargeting. [18F]18 is our lead compound for future pretargeted neuroimaging studies based on BBB-penetrant monoclonal antibodies. Pretargeting beyond the BBB will allow us to image targets in the brain that are currently not imageable, such as soluble oligomers of neurodegeneration biomarker proteins. Imaging of such currently non-imageable targets will allow early diagnosis and personalized treatment monitoring. This in turn will accelerate drug development and greatly benefit patient care.

12.
Transl Neurodegener ; 11(1): 55, 2022 12 26.
Article En | MEDLINE | ID: mdl-36567338

BACKGROUND: Hijacking the transferrin receptor (TfR) is an effective strategy to transport amyloid-beta (Aß) immuno-positron emission tomography (immunoPET) ligands across the blood-brain barrier (BBB). Such ligands are more sensitive and specific than small-molecule ligands at detecting Aß pathology in mouse models of Alzheimer's disease (AD). This study aimed to determine if this strategy would be as sensitive in rats and to assess how TfR affinity affects BBB transport of bispecific immunoPET radioligands. METHODS: Two affinity variants of the rat TfR antibody, OX26, were chemically conjugated to a F(ab')2 fragment of the anti-Aß antibody, bapineuzumab (Bapi), to generate two bispecific fusion proteins: OX265-F(ab')2-Bapi and OX2676-F(ab')2-Bapi. Pharmacokinetic analyses were performed 4 h and 70 h post-injection of radioiodinated fusion proteins in wild-type (WT) rats. [124I]I-OX265-F(ab')2-Bapi was administered to TgF344-AD and WT rats for in vivo PET imaging. Ex vivo distribution of injected [124I]I-OX265-F(ab')2-Bapi and Aß pathology were assessed. RESULTS: More [125I]I-OX265-F(ab')2-Bapi was taken up into the brain 4 h post-administration than [124I]I-OX2676-F(ab')2-Bapi. [124I]I-OX265-F(ab')2-Bapi PET visualized Aß pathology with significantly higher signals in the TgF344-AD rats than in the WT littermates without Aß pathology. The PET signals significantly correlated with Aß levels in AD animals. CONCLUSION: Affinity to TfR affects how efficiently a TfR-targeting bispecific fusion protein will cross the BBB, such that the higher-affinity bispecific fusion protein crossed the BBB more efficiently. Furthermore, bispecific immunoPET imaging of brain Aß pathology using TfR-mediated transport provides good imaging contrast between TgF344-AD and WT rats, suggesting that this immunoPET strategy has the potential to be translated to higher species.


Alzheimer Disease , Amyloid beta-Peptides , Animals , Mice , Rats , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/metabolism , Brain/diagnostic imaging , Mice, Transgenic , Disease Models, Animal , Positron-Emission Tomography
13.
Sci Rep ; 12(1): 21479, 2022 12 12.
Article En | MEDLINE | ID: mdl-36509864

The blood-brain barrier (BBB) greatly limits the delivery of protein-based drugs into the brain and is a major obstacle for the treatment of brain disorders. Targeting the transferrin receptor (TfR) is a strategy for transporting protein-based drugs into the brain, which can be utilized by using TfR-binding BBB transporters, such as the TfR-binding antibody 8D3. In this current study, we investigated if binding to heparan sulfate (HS) contributes to the brain uptake of a single chain fragment variable of 8D3 (scFv8D3). We designed and produced a scFv8D3 mutant, engineered with additional HS binding sites, HS(+)scFv8D3, to assess whether increased HS binding would improve brain uptake. Additionally, a mutant with a reduced number of HS binding sites, HS(-)scFv8D3, was also engineered to see if reducing the HS binding sites could also affect brain uptake. Heparin column chromatography showed that only the HS(+)scFv8D3 mutant bound HS in the experimental conditions. Ex vivo results showed that the brain uptake was unaffected by the introduction or removal of HS binding sites, which indicates that scFv8D3 is not dependent on the HS binding sites for brain uptake. Conversely, introducing HS binding sites to scFv8D3 decreased its renal excretion while removing them had the opposite effect.


Blood-Brain Barrier , Brain , Blood-Brain Barrier/metabolism , Brain/metabolism , Antibodies/metabolism , Heparitin Sulfate/metabolism , Binding Sites
14.
Fluids Barriers CNS ; 19(1): 99, 2022 Dec 12.
Article En | MEDLINE | ID: mdl-36510227

BACKGROUND: Treatment with amyloid-ß (Aß) targeting antibodies is a promising approach to remove Aß brain pathology in Alzheimer's disease (AD) and possibly even slow down or stop progression of the disease. One of the main challenges of brain immunotherapy is the restricted delivery of antibodies to the brain. However, bispecific antibodies that utilize the transferrin receptor (TfR) as a shuttle for transport across the blood-brain barrier (BBB) can access the brain better than traditional monospecific antibodies. Previous studies have shown that bispecific Aß targeting antibodies have higher brain distribution, and can remove Aß pathology more efficiently than monospecific antibodies. Yet, there is only limited information available on brain pharmacokinetics, especially regarding differences between mono- and bispecific antibodies. METHODS: The aim of the study was to compare brain pharmacokinetics of Aß-targeting monospecific mAb3D6 and its bispecific version mAb3D6-scFv8D3 that also targets TfR. High cut-off microdialysis was used to measure intravenously injected radiolabelled mAb3D6 and mAb3D6-scFv8D3 antibodies in the interstitial fluid (ISF) of hippocampus in wild-type mice and the AppNL-G-F mouse model of AD. Distribution of the antibodies in the brain and the peripheral tissue was examined by ex vivo autoradiography and biodistribution studies. RESULTS: Brain concentrations of the bispecific antibody were elevated compared to the monospecific antibody in the hippocampal ISF measured by microdialysis and in the brain tissue at 4-6 h after an intravenous injection. The concentration of the bispecific antibody was approximately twofold higher in the ISF dialysate compared to the concentration of monospecific antibody and eightfold higher in brain tissue 6 h post-injection. The ISF dialysate concentrations for both antibodies were similar in both wild-type and AppNL-G-F mice 24 h post-injection, although the total brain tissue concentration of the bispecific antibody was higher than that of the monospecific antibody at this time point. Some accumulation of radioactivity around the probe area was observed especially for the monospecific antibody indicating that the probe compromised the BBB to some extent at the probe insertion site. CONCLUSION: The BBB-penetrating bispecific antibody displayed higher ISF concentrations than the monospecific antibody. The concentration difference between the two antibodies was even larger in the whole brain than in the ISF. Further, the bispecific antibody, but not the monospecific antibody, displayed higher total brain concentrations than ISF concentrations, indicating association to brain tissue.


Alzheimer Disease , Antibodies, Bispecific , Animals , Mice , Antibodies, Bispecific/pharmacokinetics , Tissue Distribution , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Brain/metabolism , Disease Models, Animal
15.
Alzheimers Res Ther ; 14(1): 180, 2022 12 05.
Article En | MEDLINE | ID: mdl-36471433

BACKGROUND: Aggregation of the amyloid-ß (Aß) peptide in the brain is one of the key pathological events in Alzheimer's disease (AD). Reducing Aß levels in the brain by enhancing its degradation is one possible strategy to develop new therapies for AD. Neprilysin (NEP) is a membrane-bound metallopeptidase and one of the major Aß-degrading enzymes. The secreted soluble form of NEP (sNEP) has been previously suggested as a potential protein-therapy degrading Aß in AD. However, similar to other large molecules, peripherally administered sNEP is unable to reach the brain due to the presence of the blood-brain barrier (BBB). METHODS: To provide transcytosis across the BBB, we recombinantly fused the TfR binding moiety (scFv8D3) to either sNEP or a previously described variant of NEP (muNEP) suggested to have higher degradation efficiency of Aß compared to other NEP substrates, but not per se to degrade Aß more efficiently. To provide long blood half-life, an Fc-based antibody fragment (scFc) was added to the designs, forming sNEP-scFc-scFv8D3 and muNEP-scFc-scFv8D3. The ability of the mentioned recombinant proteins to degrade Aß was first evaluated in vitro using synthetic Aß peptides followed by sandwich ELISA. For the in vivo studies, a single injection of 125-iodine-labelled sNEP-scFc-scFv8D3 and muNEP-scFc-scFv8D3 was intravenously administered to a tg-ArcSwe mouse model of AD, using scFc-scFv8D3 protein that lacks NEP as a negative control. Different ELISA setups were applied to quantify Aß concentration of different conformations, both in brain tissues and blood samples. RESULTS: When tested in vitro, sNEP-scFc-scFv8D3 retained sNEP enzymatic activity in degrading Aß and both constructs efficiently degraded arctic Aß. When intravenously injected, sNEP-scFc-scFv8D3 demonstrated 20 times higher brain uptake compared to sNEP. Both scFv8D3-fused NEP proteins significantly reduced aggregated Aß levels in the blood of tg-ArcSwe mice, a transgenic mouse model of AD, following a single intravenous injection. In the brain, monomeric and oligomeric Aß were significantly reduced. Both scFv8D3-fused NEP proteins displayed a fast clearance from the brain. CONCLUSION: A one-time injection of a BBB-penetrating NEP shows the potential to reduce, the likely most toxic, Aß oligomers in the brain in addition to monomers. Also, Aß aggregates in the blood were reduced.


Alzheimer Disease , Amyloid beta-Peptides , Blood-Brain Barrier , Neprilysin , Animals , Mice , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/metabolism , Disease Models, Animal , Mice, Transgenic , Neprilysin/metabolism , Proteolysis
16.
Chembiochem ; 23(23): e202200539, 2022 12 05.
Article En | MEDLINE | ID: mdl-36333105

Tetrazine (Tz)-trans-cyclooctene (TCO) ligation is an ultra-fast and highly selective reaction and it is particularly suited to label biomolecules under physiological conditions. As such, a 3 H-Tz based synthon would have wide applications for in vitro/ex vivo assays. In this study, we developed a 3 H-labeled Tz and characterized its potential for application to pretargeted autoradiography. Several strategies were explored to synthesize such a Tz. However, classical approaches such as reductive halogenation failed. For this reason, we designed a Tz containing an aldehyde and explored the possibility of reducing this group with NaBT4 . This approach was successful and resulted in [3 H]-(4-(6-(pyridin-2-yl)-1,2,4,5-tetrazin-3-yl)phenyl)methan-t-ol with a radiochemical yield of 22 %, a radiochemical purity of 96 % and a molar activity of 0.437 GBq/µmol (11.8 Ci/mmol). The compound was successfully applied to pretargeted autoradiography. Thus, we report the synthesis of the first 3 H-labeled Tz and its successful application as a labeling building block.


Heterocyclic Compounds , Radiopharmaceuticals , Cell Line, Tumor , Radiopharmaceuticals/chemistry , Cyclooctanes/chemistry
17.
Mol Pharm ; 19(11): 4111-4122, 2022 11 07.
Article En | MEDLINE | ID: mdl-36201682

Small molecule imaging agents such as [11C]PiB, which bind to the core of insoluble amyloid-ß (Aß) fibrils, are useful tools in Alzheimer's disease (AD) research, diagnostics, and drug development. However, the [11C]PiB PET signal saturates early in the disease progression and does not detect soluble or diffuse Aß pathology which are believed to play important roles in the disease progression. Antibodies, modified into a bispecific format to enter the brain via receptor-mediated transcytosis, could be a suitable alternative because of their diversity and high specificity for their target. However, the circulation time of these antibodies is long, resulting in an extended exposure to radiation and low imaging contrast. Here, we explore two alternative strategies to enhance imaging contrast by increasing clearance of the antibody ligand from blood. The bispecific Aß targeting antibody RmAb158-scFv8D3 and the monospecific RmAb158 were radiolabeled and functionalized with either α-d-mannopyranosylphenyl isothiocyanate (mannose) or with trans-cyclooctene (TCO). While mannose can directly mediate antibody clearance via the liver, TCO-modified antibody clearance was induced by injection of a tetrazine-functionalized, liver-targeting clearing agent (CA). In vivo experiments in wild type and AD transgenic mice demonstrated the ability of both strategies to drastically shorten the circulation time of RmAb158, while they had limited effect on the bispecific variant RmAb158-8D3. Furthermore, single photon emission computed tomography imaging with TCO-[125I]I-RmAb158 in AD mice showed higher contrast 1 day after injection of the tetrazine-functionalized CA. In conclusion, strategies to enhance the clearance of antibody-based imaging ligands could allow imaging at earlier time points and thereby open the possibility to combine antibodies with short-lived radionuclides such as fluorine-18.


Alzheimer Disease , Immunoconjugates , Animals , Mice , Mannose , Immunoconjugates/pharmacology , Amyloid beta-Peptides/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Brain/diagnostic imaging , Brain/metabolism , Mice, Transgenic , Amyloid/metabolism , Antibodies/metabolism , Disease Progression , Neuroimaging , Positron-Emission Tomography/methods
18.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 27.
Article En | MEDLINE | ID: mdl-36297303

Pretargeting is a promising nuclear imaging technique that allows for the usage of antibodies (Abs) with enhanced imaging contrast and reduced patient radiation burden. It is based on bioorthogonal chemistry with the tetrazine ligation-a reaction between trans-cyclooctenes (TCOs) and tetrazines (Tzs)-currently being the most popular reaction due to its high selectivity and reactivity. As Abs can be designed to bind specifically to currently 'undruggable' targets such as protein isoforms or oligomers, which play a crucial role in neurodegenerative diseases, pretargeted imaging beyond the BBB is highly sought after, but has not been achieved yet. A challenge in this respect is that large molecules such as Abs show poor brain uptake. Uptake can be increased by receptor mediated transcytosis; however, it is largely unknown if the achieved brain concentrations are sufficient for pretargeted imaging. In this study, we investigated whether the required concentrations are feasible to reach. As a model Ab, we used the bispecific anti-amyloid beta (Aß) anti-transferrin receptor (TfR) Ab 3D6scFv8D3 and conjugated it to a different amount of TCOs per Ab and tested different concentrations in vitro. With this model in hand, we estimated the minimum required TCO concentration to achieve a suitable contrast between the high and low binding regions. The estimation was carried out using pretargeted autoradiography on brain sections of an Alzheimer's disease mouse model. Biodistribution studies in wild-type (WT) mice were used to correlate how different TCO/Ab ratios alter the brain uptake. Pretargeted autoradiography showed that increasing the number of TCOs as well as increasing the TCO-Ab concentration increased the imaging contrast. A minimum brain concentration of TCOs for pretargeting purposes was determined to be 10.7 pmol/g in vitro. Biodistribution studies in WT mice showed a brain uptake of 1.1% ID/g using TCO-3D6scFv8D3 with 6.8 TCO/Ab. According to our estimations using the optimal parameters, pretargeted imaging beyond the BBB is not a utopia. Necessary brain TCO concentrations can be reached and are in the same order of magnitude as required to achieve sufficient contrast. This work gives a first estimate that pretargeted imaging is indeed possible with antibodies. This could allow the imaging of currently 'undruggable' targets and therefore be crucial to monitor (e.g., therapies for intractable neurodegenerative diseases).

19.
Neurotherapeutics ; 19(5): 1588-1602, 2022 Sep.
Article En | MEDLINE | ID: mdl-35939261

Amyloid-ß (Aß) oligomers and protofibrils are suggested to be the most neurotoxic Aß species in Alzheimer's disease (AD). Hence, antibodies with strong and selective binding to these soluble Aß aggregates are of therapeutic potential. We have recently introduced HexaRmAb158, a multivalent antibody with additional Aß-binding sites in the form of single-chain fragment variables (scFv) on the N-terminal ends of Aß protofibril selective antibody (RmAb158). Due to the additional binding sites and the short distance between them, HexaRmAb158 displayed a slow dissociation from protofibrils and strong binding to oligomers in vitro. In the current study, we aimed at investigating the therapeutic potential of this antibody format in vivo using mouse models of AD. To enhance BBB delivery, the transferrin receptor (TfR) binding moiety (scFv8D3) was added, forming the bispecific-multivalent antibody (HexaRmAb158-scFv8D3). The new antibody displayed a weaker TfR binding compared to the previously developed RmAb158-scFv8D3 and was less efficiently transcytosed in a cell-based BBB model. HexaRmAb158 detected soluble Aß aggregates derived from brains of tg-ArcSwe and AppNL-G-F mice more efficiently compared to RmAb158. When intravenously injected, HexaRmAb158-scFv8D3 was actively transported over the BBB into the brain in vivo. Brain uptake was marginally lower than that of RmAb158-scFv8D3, but significantly higher than observed for conventional IgG antibodies. Both antibody formats displayed similar brain retention (72 h post injection) and equal capacity in clearing soluble Aß aggregates in tg-ArcSwe mice. In conclusion, we demonstrate a bispecific-multivalent antibody format capable of passing the BBB and targeting a wide-range of sizes of soluble Aß aggregates.


Alzheimer Disease , Animals , Mice , Alzheimer Disease/drug therapy , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Brain/metabolism , Receptors, Transferrin/metabolism , Receptors, Transferrin/therapeutic use , Immunoglobulin G/therapeutic use
20.
Acta Neuropathol Commun ; 10(1): 96, 2022 07 04.
Article En | MEDLINE | ID: mdl-35787306

Cerebrospinal fluid (CSF) biomarkers play an important role in diagnosing Alzheimer's disease (AD) which is characterized by amyloid-ß (Aß) amyloidosis. Here, we used two App knock-in mouse models, AppNL-F/NL-F and AppNL-G-F/NL-G-F, exhibiting AD-like Aß pathology to analyze how the brain pathologies translate to CSF proteomes by label-free mass spectrometry (MS). This identified several extracellular matrix (ECM) proteins as significantly altered in App knock-in mice. Next, we compared mouse CSF proteomes with previously reported human CSF MS results acquired from patients across the AD spectrum. Intriguingly, the ECM protein decorin was similarly and significantly increased in both AppNL-F/NL-F and AppNL-G-F/NL-G-F mice, strikingly already at three months of age in the AppNL-F/NL-F mice and preclinical AD subjects having abnormal CSF-Aß42 but normal cognition. Notably, in this group of subjects, CSF-decorin levels positively correlated with CSF-Aß42 levels indicating that the change in CSF-decorin is associated with early Aß amyloidosis. Importantly, receiver operating characteristic analysis revealed that CSF-decorin can predict a specific AD subtype having innate immune activation and potential choroid plexus dysfunction in the brain. Consistently, in AppNL-F/NL-F mice, increased CSF-decorin correlated with both Aß plaque load and with decorin levels in choroid plexus. In addition, a low concentration of human Aß42 induces decorin secretion from mouse primary neurons. Interestingly, we finally identify decorin to activate neuronal autophagy through enhancing lysosomal function. Altogether, the increased CSF-decorin levels occurring at an early stage of Aß amyloidosis in the brain may reflect pathological changes in choroid plexus, present in a subtype of AD subjects.


Alzheimer Disease , Amyloidosis , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloidosis/pathology , Animals , Brain/pathology , Decorin/cerebrospinal fluid , Decorin/metabolism , Humans , Mice , Plaque, Amyloid/pathology , Proteome/metabolism
...